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Abstract— We consider spatially coupled code ensembles. A
particular instance are convolutional LDPC ensembles. It was
recently shown that, for transmission over the binary erasure
channel, this coupling increases the belief propagation threshold
of the ensemble to the maximum a-priori threshold of the
underlying component ensemble. We report on empirical evi-
dence which suggests that the same phenomenon also occurs
when transmission takes place over a general binary memoryless
symmetric channel. This is confirmed both by simulations as
well as by computing EBP GEXIT curves and by comparing the
empirical BP thresholds of coupled ensembles to the empirically
determined MAP thresholds of the underlying regular ensembles.

We further consider ways of reducing the rate-loss incurred
by such constructions.

I. INTRODUCTION

It has long been known that convolutional LDPC (or spa-
tially coupled) ensembles, introduced by Felström and Zigan-
girov [1], have excellent thresholds when transmitting over
general binary-input symmetric-output memoryless (BMS)
channels. The fundamental reason underlying this good per-
formance was recently discussed in detail in [2] for the case
when transmission takes place over the binary erasure channel
(BEC).

In particular, it was shown in [2] that the BP threshold
of the spatially coupled ensemble (see the last paragraph of
this section for a definition) is essentially equal to the MAP
threshold of the underlying component ensemble. It was also
shown that for long chains the MAP performance of the chain
cannot be substantially larger than the MAP threshold of the
component ensemble. In this sense, the BP threshold of the
chain is increased to its maximal possible value. This is the
reason why we call this phenomena threshold saturation via
spatial coupling. In a recent paper [3], Lentmaier and Fettweis
independently formulated the same statement as conjecture.
They attribute the observation of the equality of the two
thresholds to G. Liva.

It is tempting to conjecture that the same phenomenon
occurs for transmission over general BMS channels. We pro-
vide some empirical evidence that this is indeed the case. In
particular, we compute EBP GEXIT curves for transmission
over the binary additive white Gaussian noise (BAWGN)
channel. We show that these curves behave in an identical

fashion to the ones when transmission takes place over the
BEC. We also compute fixed points (FPs) of the spatial
configuration and we demonstrate again empirically that these
FPs have properties identical to the ones in the BEC case.

For a review on the literature on convolutional LDPC
ensembles we refer the reader to [2] and the references therein.
As discussed in [2], there are many basic variants of coupled
ensembles. For the sake of convenience of the reader, we
quickly review the ensemble (l, r, L, w). This is the ensemble
we use throughout the paper.

We assume that the variable nodes are at sections [−L,L],
L ∈ N. At each section there are M variable nodes, M ∈
N. Conceptually we think of the check nodes to be located
at all integer positions from [−∞,∞]. Only some of these
positions actually interact with the variable nodes. At each
position there are l

r
M check nodes. It remains to describe

how the connections are chosen. We assume that each of the
l connections of a variable node at position i is uniformly and
independently chosen from the range [i, . . . , i+w−1], where
w is a “smoothing” parameter. In the same way, we assume
that each of the r connections of a check node at position i
is independently chosen from the range [i− w + 1, . . . , i].

A discussion on the above ensemble and a proof of the
following lemma can be found in [2].

Lemma 1 (Design Rate): The design rate of the ensemble
(l, r, L, w), with w ≤ 2L, is given by

R(l, r, L, w) = (1− l

r
)− l

r

w + 1− 2
∑w
i=0

(
i
w

)r
2L+ 1

.

II. REVIEW: EBP GEXIT CURVES, THE AREA THEOREM,
AND THE MAXWELL CONSTRUCTION

Our aim is to empirically demonstrate that the performance
of coupled ensembles is closely related to that of the un-
derlying ensemble also in the general case. We limit our
discussion to the coupling of regular ensembles. To get started,
let us briefly review how the BP and MAP threshold can be
characterized for regular ensembles. A detailed discussion can
be found in [4].

For ` ≥ 1, the (forward) density evolution (DE) equation
for an (l, r)-regular ensemble is given by

x` = c ~ (x�(r−1)
`−1 )~(l−1).
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Here, c is the L-density of the BMS channel over which
transmission takes place and x` is the density emitted by
variable nodes in the `-th round of density evolution. Initially
we have x0 = ∆0, the delta function at 0. The operators ~
and � correspond to the convolution of densities at variable
and check nodes, respectively. We say that a density x is a
FP of DE for the channel c if x = c ~ (x�(r−1))~(l−1). More
succinctly, we say that (c, x) is a FP of DE.

For the BEC it is known that the behavior of the BP as
well as the behavior of the MAP decoder are determined by
the collection of FPs of DE. The same is conjectured to be true
for general channels. Let us discuss this general conjecture.

The key concept in this conjecture is the EBP GEXIT curve
(see [5] for definition). This curve is shown in Figure 1 for
the (3, 6)-regular ensemble assuming that transmission takes
place over the BAWGN. Numerically it is constructed in the
following way. To construct one point on this curve find a FP
(cσ, x), where cσ denotes an element of the channel family
under consideration. E.g., in the case considered in Figure 1,
cσ represents the L-density of a BAWGN channel of variance
σ2. This FP gives rise to the point (H(cσ), G(cσ, x)) in the
GEXIT plot. Hereby,

H(a) =
∫

a(y) log(1 + e−y)dy,

G(cσ, a) =
∫

a(y)l(σ, y)dy

l(σ, y) =
(∫ e−

(z−2/σ2)2σ2

8

1 + ez+y
dz
)
/
(∫ e−

(z−2/σ2)2σ2

8

1 + ez
dz
)
.

In words, H(·) computes the entropy associated to an L-
density, whereas G(cσ, ·) computes the so-called GEXIT value
of an L-density. This GEXIT value depends on the “operating
point”, i.e., it depends on the underlying channel cσ . To first
order, the GEXIT value is equal to the entropy.

We get the EBP GEXIT curve if we plot the points corre-
sponding to all FPs of DE. For a detailed discussion we refer
the reader to [4], [5]. It was shown in [5] that, under suitable
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Fig. 1. The EBP GEXIT curve for the (l = 3, r = 6)-regular ensemble
and transmission over the BAWGNC. Each point on the curve corresponds
to a FP (cσ , x) of DE. The two figures show the FP density x as well as the
input density cσ for two points on the curves (see inlets).

technical conditions, for every GEXIT value g ∈ [0, 1] there
exists at least one FP (cσ, x) with GEXIT value g. Further,
a simple recursive numerical procedure can be used to find
such a FP. The technical difficulty lies in establishing the
existence of the curve (rather than the existence of just the set

of FPs). Although the numerical evidence strongly suggests
the existence of the curve, it is an open problem to prove this
analytically.

We can construct an upper bound on the MAP threshold as
shown in Figure 2, see [5]: integrate the EBP GEXIT curve
starting from the point (1, 1) from right to left until the area
under the curve equals the rate of the code. The point on the
x-axis where this equality occurs is an upper bound on the
MAP threshold. It is conjectured to be in fact the exact MAP
threshold.
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Fig. 2. Upper bound on the MAP threshold for the (3, 6)-regular ensemble
and transmission over the BAWGNC. This upper bound is given by the entropy
value where the dark gray vertical line hits the x-axis. The Maxwell conjecture
states that this bound is tight. Numerically the upper bound is at a channel
entropy of roughly 0.4792. For comparison, the BP threshold is at a channel
entropy of roughly 0.4291.

III. DENSITY EVOLUTION, FIXED POINTS, AND THE EBP
GEXIT CURVE FOR COUPLED ENSEMBLES

A. Density Evolution

Let us describe the DE equations for the (l, r, L, w) ensem-
ble. In the sequel, densities are L-densities. Let c denote the
channel density and let xi denote the density which is emitted
by variable nodes at position i.

Definition 2 (Density Evolution of (l, r, L, w) Ensemble):
Let xi, i ∈ Z, denote the average L-density which is emitted
by variable nodes at position i. For i 6∈ [−L,L] we set
xi = ∆+∞. Here, ∆+∞ is the delta function at +∞. In
words, the boundary variable nodes have perfect information.
For i ∈ [−L,L], the FP condition implied by DE is

xi = c ~
( 1
w

w−1∑
j=0

( 1
w

w−1∑
k=0

xi+j−k
)�(r−1)

)~(l−1)

. (1)

Define

g(xi−w+1,. . ., xi+w−1) =
( 1
w

w−1∑
j=0

( 1
w

w−1∑
k=0

xi+j−k
)�(r−1)

)~(l−1)
.

Note that g(x, . . . , x) = (x�(r−1))~(l−1), where the r-h-s
represents DE (without the effect of the channel) for the
underlying (l, r)-regular ensemble.

We write y ≺ x if x is degraded w.r.t. y. It is not hard to
see [4] that the function g(xi−w+1, . . . , xi) is monotone w.r.t.
degradation in all its arguments xj , j = i − w + 1, . . . , i.
More precisely, if we degrade any of the densities xj , j =
i−w+1, . . . , i, then g(·) is also degraded w.r.t. to its original
value. We say that g(·) is monotone in its arguments. �
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B. Fixed Points and Admissible Schedules

Definition 3 (FPs of Density Evolution): Consider DE for
the (l, r, L, w) ensemble. Let x = (x−L, . . . , xL). We call
x the constellation (of symmetric L-densities). We say that
x forms a FP of DE with channel c if x fulfills (1) for
i ∈ [−L,L]. As a shorthand we then say that (c, x) is a FP.
We say that (c, x) is a non-trivial FP if x is not identically
equal to ∆+∞ ∀ i. Again, for i /∈ [−L,L], xi = ∆+∞. �

Definition 4 (Forward DE and Admissible Schedules):
Consider forward DE for the (l, r, L, w) ensemble. More
precisely, pick a channel cσ . Initialize x(0) = (∆0, . . . ,∆0).
Let x(`) be the result of ` rounds of DE. More precisely,
x(`+1) is generated from x(`) by applying the DE equation
(1) to each section i ∈ [−L,L],

x
(`+1)
i = c ~ g(x(`)

i−w+1, . . . , x
(`)
i+w−1).

We call this the parallel schedule.
More generally, consider a schedule in which in each step

` an arbitrary subset of the sections is updated, constrained
only by the fact that every section is updated in infinitely
many steps. We call such a schedule admissible. Again, we
call x(`) the resulting sequence of constellations.

Lemma 5 (FPs of Forward DE): Consider forward DE for
the (l, r, L, w) ensemble. Let x(`) denote the sequence of
constellations under an admissible schedule. Then x(`) con-
verges to a FP of DE, with each component being a symmetric
L-density and this FP is independent of the schedule. In
particular, it is equal to the FP of the parallel schedule.

Proof: Consider first the parallel schedule. We claim that
the vectors x(`) are ordered, i.e., x(0) � x(1) � · · · � 0 (the
ordering is section-wise and 0 is the vector of ∆+∞). This is
true since x(0) = (∆0, . . . ,∆0), whereas x(1) ≺ (c, . . . , c) ≺
(∆0, . . . ,∆0) = x(0). It now follows by induction on the
number of iterations and the monotonicity of the function g(·),
∀ i, that the sequence x(`) is monotonically decreasing. More
precisely, we have x(`+1)

i ≺ x
(`)
i . Hence, from Lemma 4.75

in [4], we conclude that each section converges to a limit
density which is also symmetric. Call the limit x∞. Since the
DE equations are continuous it follows that x(∞) is a FP of
DE (1) with parameter c. We call x(∞) the forward FP of DE.

That the limit (exists in general and that it) does not depend
on the schedule follows by standard arguments and we will
be brief. The idea is that for any two admissible schedules the
corresponding computation trees are nested. This means that
if we look at the computation graph of schedule let’s say 1
at time ` then there exists a time `′ so that the computation
graph under schedule 2 is a superset of the first computation
graph. To be able to come to this conclusion we have crucially
used the fact that for an admissible schedule every section
is updated infinitely often. This shows that the performance
under schedule 2 is at least as good as the performance under
schedule 1. Since the roles of the schedules are symmetric,
the claim follows.

C. The EBP GEXIT Curve for Coupled Ensembles

We come now to the key point, the computation of the
EBP GEXIT curve. From previous sections we have seen that

FPs of forward DE are well defined and can be computed
by applying a parallel schedule. This procedure allows us to
compute stable FPs. As discussed in Section II, it was shown
in [5] how to compute unstable FPs for uncoupled ensembles
by a modified DE procedure in which the entropy is kept fixed
and the channel parameter is varied. The same procedure can
be applied for coupled ensembles. Figure 3 shows the result
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Fig. 3. EBP GEXIT curves of the ensemble (l = 3, r = 6, L) for L =
1, 2, 4, 8, 16, and 32 and transmission over the BAWGNC. The BP thresholds
are εBP(3, 6, 1) = 0.66324, εBP(3, 6, 2) = 0.54701, εBP(3, 6, 4) = 0.49031,
εBP(3, 6, 8) = 0.47928, εBP(3, 6, 16) = 0.47918, εBP(3, 6, 32) = 0.47917,
The light/dark gray areas mark the interior of the BP/MAP GEXIT function
of the underlying (3, 6)-regular ensemble, respectively.

of this numerical computation when transmission takes place
over the BAWGNC. Note that the resulting curves look very
similar to the curves when transmission takes place over the
BEC, see [2]. For very small values of L the curves are far
to the right due to the significant rate loss that is incurred at
the boundary. For L around 10 and above, the BP threshold
of each ensemble is very close to the MAP threshold of
the underlying (3, 6)-regular ensemble, namely 0.4792. The
picture strongly suggests that the same threshold saturation
effect occurs for general channels as it was shown analytically
to hold for the BEC in [2].

IV. A POSSIBLE PROOF APPROACH

So far the current discussion was empirical. Let us now
quickly review which parts of the proof in [2] can be extended
easily and which currently seem difficult.
(i) Constellation parameter: For the BEC, entropy is equal
to the Bhattacharyya parameter which is equal to the era-
sure probability and which is also equal to twice the error
probability. So, in this case any of those values is a natural
quantity to parametrize constellations. For general channels,
these parameters differ, and their choice is not necessarily
equivalent for the purpose of the proof.
(ii) Existence of FP: Although we did not explicitly state
it in this short paper, the Existence Theorem 29 of [2],
which guarantees the existence of a special FP of DE (c.f.
Figure 4) can be extended to the general case by considering
the Battacharyya functional. The main technical difficulty in
the proof arises due to the fact that we are now operating on
a space of symmetric probability densities. So to extend the
proof of the BEC, we need to define appropriate metrics in this
space so that we can apply the necessary fixed-point theorems.
Together with the use of extremes of information combining
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methods, see Chapter 4 in [4], the proof extends.
(iii) Shape of the constellation and the transition length: A key
ingredient in the proof for the BEC was to show that any FP of
DE has a very particular “shape.” More precisely, any FP had a
very “fast” transition between its extreme values. Empirically,
for the general case we observe the same phenomena. From
Figure 4 we see that the FP quickly saturates to its maximum
value (w.r.t. physical degradation) of the stable FP of the
(l, r)-regular ensemble. To show this property analytically
seems currently to be one of the key difficulties in extending
the proof.
(iv) Construction of GEXIT Curve and the Area Theorem:
Another key part of the BEC proof is the construction of a
family of FPs (not necessarily stable FPs). The GEXIT curve
plus the fast transition makes it possible in the case of the
BEC to show that the “special” FP which was constructed via
the existence theorem, has an associated channel parameter
very close to the MAP threshold. How to best construct the
GEXIT curve is an open issue.

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

-16 -12 -8 -4 0

Fig. 4. Unimodal (special) FP of the (l = 3, r = 6, L = 16, w = 3)
ensemble for BAWGNC(σ) with σ = 0.9480 (channel entropy ≈ 0.4792).
The bottom figure plots the entropy of the density at each section. The values
are small at the boundary and essentially constant in the middle. The top
figure shows the actual densities at sections 0, -4, -8, -12, -16. Notice that the
mass shifts towards the right as sections go to -16. Also plotted in the top
figure at section 0 is the stable FP of DE for the (3, 6)-regular ensemble at
σ = 0.9480. The density is right on the top of the one at section 0.

V. HOW TO MITIGATE THE RATE LOSS

We have seen that by coupling ensembles we can increase
the threshold substantially. We also know that, due to the
boundary condition, we incur a rate loss (see Lemma 1). This
rate loss decreases linearly in 2L+ 1, the length of the chain.
Therefore, by picking L large we can ensure that the rate loss
is as small as desired. But large L implies large codeword
lengths and also may require a large number of iterations in
the decoding process. This motivates to find ways of mitigating
this rate loss.

To keep things simple, we consider transmission over the
BEC. The same techniques and trade-offs apply to general
BMS channels, but of course the given numerical values will
change. We discuss two basic techniques: (i) rather than setting
all boundary variables to be known, it suffices to set to known
only a smaller fraction; (ii) it suffices to start the process at
only one boundary rather than both. In addition there might
be a benefit to consider ensembles defined on a circle rather

than a line. This symmetrizes all positions of the ensemble,
which in turn might lead to more efficient implementations.

A. Circular Ensembles
Consider a “circular” ensemble. This ensemble is defined in

a similar manner as the (l, r, L, w) ensemble except that the
positions are now from 0 to K − 1 and the index arithmetic
is performed modulo K. This circular ensemble has design
rate equal to 1 − l/r. If we let K = 2L + w and if we
set w− 1 consecutive variable positions to 0 then we recover
the ensemble (l, r, L, w). This in itself gives a possibly more
efficient way of implementing coupled ensembles. In this
implementation all positions are symmetric, except for the
received values, which are modified for the chosen w − 1
consecutive positions.

Let us now generalize the construction. For k ∈ [0,K − 1]
let κk ∈ [0, 1] denote the fraction of variable nodes at position
k which we set to be known. E.g., if we set κ0 = κ1 = · · · =
κw−2 = 1 and all other κi values to 0 then we recover the
previous case. Define κ = {κi}. As we will see shortly, from a
rate perspective, it is not necessarily the best to set all variables
at a certain position to 0. Further, it can be better to choose
the “boundary” positions to be non-consecutive. This is why
it is useful to introduce the above general model.

To start, let us compute the design rate for the above set-up.
We denote this ensemble by (l, r,K,w, κ).

Lemma 6 (Rate): The design rate R(l, r,K,w, κ) of the
ensemble (l, r,K,w, κ) is given by

1− l

r
− l

r

∑K−1
k=0 [κk − ( 1

w

∑w−1
j=0 κk−j)

r]∑K−1
k=0 (1− κk)

.

Proof: The design rate is equal to 1 − C/V , where C
and V are the number check and variable nodes which are not
fixed a priori to 0. Let us call those variable nodes “free.”

Let us start with V . There are M variable nodes per section.
A fraction κi of those is permanently fixed to 0. Therefore,
the number of free variable nodes is V = M

∑K−1
k=0 (1− κk).

At each section there are M l
r

check nodes. A check node
imposes a constraint on the free variable nodes if at least one
of its connections goes to a free variable node. The probability
that a particular edge of a check node at position k is connected
to a frozen bit is equal to 1

w

∑w−1
j=0 κk−j , where all index

arithmetic is modulo K. This implies that the probability that
all r edges of a check node at position k are connected to
frozen variables is equal to ( 1

w

∑w−1
j=0 κk−j)

r. Therefore, C =
MK l

r
(1− 1

K

∑K−1
k=0 ( 1

w

∑w−1
j=0 κk−j)

r).
Example 7 (Contiguous and Uniform Boundary):

Consider the (l = 3, r = 6,K,w, κ) ensemble where
we set κ0 = κ1 = · · · = κw−2 = κ. We set all other values
κk equal to 0. For the choice κ = 1 we know that we can
achieve a threshold of roughly 0.48815 irrespective of the
length of K. What happens if we pick κ strictly less than 1?

Let δ denote the “effective” erasure probability at the bound-
ary. I.e., δ denotes the fraction of variables in the boundary
which are free and which were erased during the transmission
process. We have δ = (1− κ)ε. What is the threshold εBP that
can be achieved (for arbitrary large K) for a given value of
δ?
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Figure 5 shows the plot of εBP according to DE for w =
3, 4, 8, 16 and 32 as a function of δ. For e.g. w = 3,
up to δ = 0.23 the achievable threshold is still equal to
its maximal value, namely 0.48815. For higher values of δ
the threshold gracefully decreases. For δ = 0.23 we have
κ = 1 − 0.23/0.48815 = 0.529. For this value of κ the
corresponding rate for K = 25 is 0.478. This is considerably
larger than 0.4604, which is the rate if κ = 1. Indeed, the rate
loss has almost been halved.
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0.42

δ

εBP

Fig. 5. Behavior of the threshold εBP for a uniform and consecutive boundary
condition as a function of the effective erasure probability δ at the boundary.
The parameters are w = 3, 4, 8, 16 and 32. For w=3, 4 we choose K=200
and for for w = 8, 16, 32 we chose K = 400. The x-axis shows δ =
(1−κ)εBP. The y-axis shows the achievable threshold εBP. The curve for
w = 3 is the left-most curve and the curve for w = 32 is the right-most
curve. We have εBP ≈ 0.48815 up to δ ≈ 0.23 for w = 3, up to δ ≈ 0.267
for w= 4, up to δ ≈ 0.3 for w= 8, up to δ ≈ 0.31 for w = 16, and up
to δ≈ 0.32 for w = 32. For larger values of δ, εBP gracefully decreases to
εBP≈0.4294.

Example 8 (Non-Contiguous and Non-Uniform Boundary):
We can do slightly better. Pick δ0 = 0.22 and δ2 = 0.30.
Note that these two positions are non-contiguous. For this
choice we still get a threshold of 0.48815. The corresponding
rate for K = 25 is 0.4806, which is slightly higher than in
the previous case.

B. One-Sided Ensemble

An alternative scheme is to define the ensemble on a line but
to employ different terminations at the two boundaries. To be
precise. Let the variable nodes be positioned from 0 to K−1.
Assume the usual (l, r, w) case. At the ”right” boundary use
the following termination scheme. At position K there are
M l

r
w−1

2 check nodes (instead of the usual M l
r
). Any edge,

which under the standard connection rules should connect to
a check node at a position K or larger is mapped to a check
node socket at position K. In expectation, exactly Mlw−1

2
such sockets are needed so that all check nodes at position K
have degree exactly r. Therefore, locally the right-hand side
boundary behaves exactly like a (l, r) ensemble and there is
no rate loss associated with this boundary.

On the left-hand side we proceed as in the standard ensem-
ble. This reduces the rate-loss by a factor 2 compared to the
standard ensemble. E.g., for K = 25 we get for our usual
(3, 6)-ensemble a rate of 0.48. But we can do better.

Example 9 (One-Sided Termination of (3, 6) Ensemble):
Let w = 3 and consider an ensemble in which the right
boundary is terminated without rate loss as described above.

Under the standard scheme, the check nodes at position 0
have degree 2 and check nodes at position 1 have degree 4.

Take a fraction α of the check nodes at position 0 and merge
them with check nodes at position 1. Those merged nodes at
position 1 have degree 6 as in the regular case. As long as
α is sufficiently small the threshold still remains unchanged.
But this merging further reduces the incurred rate loss.

A small note of caution might be in order at this place. Even
though we can, as we just showed, mitigate the rate loss, this
comes at some price – the number of required iterations will
go up. A characterization of the involved trade-off would be
of high practical interest.

VI. CONCLUSION

Starting with the work by Felström and Zigangirov [1], it
has been known that coupled ensembles have an excellent
performance. This was confirmed via threshold computations
by Sridharan, Lentmaier, Costello and Zigangirov for the BEC
[6] and by Lentmaier, Sridharan, Zigangirov and Costello for
general channels [7]. In [2] it was shown that for transmission
over the BEC the BP behavior of coupled ensembles is
essentially equal to the MAP behavior of the underlying
ensemble.

The current paper provides numerical evidence which sug-
gest that exactly the same behavior occurs also for transmis-
sion over general BMS channels. We have further extended
some of the basic techniques and statements which were used
in [2] to accomplish the proof for the BEC to the general setup.
A complete proof is unfortunately still open. As discussed
already in [2], such a proof would automatically show that it
is possible to achieve capacity under iterative coding, and in
addition, the convergence to capacity would be uniform over
the whole class of BMS channels.
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